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Experimental characterization 
of speech aerosol dispersion 
dynamics
Zu Puayen Tan1,2*, Lokesh Silwal1, Surya P. Bhatt3 & Vrishank Raghav1*

Contact and inhalation of virions-carrying human aerosols represent the primary transmission 
pathway for airborne diseases including the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Relative to sneezing and coughing, non-symptomatic aerosol-producing activities such as 
speaking are highly understudied. The dispersions of aerosols from vocalization by a human subject 
are hereby quantified using high-speed particle image velocimetry. Syllables of different aerosol 
production rates were tested and compared to coughing. Results indicate aerosol productions and 
penetrations are not correlated. E.g. ‘ti’ and ‘ma’ have similar production rates but only ‘ti’ penetrated 
as far as coughs. All cases exhibited a rapidly penetrating “jet phase” followed by a slow “puff phase.” 
Immediate dilution of aerosols was prevented by vortex ring flow structures that concentrated 
particles toward the plume-front. A high-fidelity assessment of risks to exposure must account for 
aerosol production rate, penetration, plume direction and the prevailing air current.

Contact and inhalation of virions-carrying human aerosols represent the primary pathway of transmission for 
many airborne diseases, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2 of 2020. 
Among the studies that have been devoted to understand the production and dispersion of human aerosols, 
most have focused on coughs and sneezes3–15, as a mode of disease transmission after the onset of symptoms. 
In contrast, there is significantly less understanding of non-symptomatic aerosol-producing activities such as 
speaking. This has become a significant issue during the SARS-CoV-2 pandemic with large proportions of 
infected persons remaining asymptomatic but infectious during the virus incubation period and/or throughout 
the course of infection. In fact, a recent study found that pre-symptomatic persons can shed SARS-CoV-2 virus 
at a higher rate than symptomatic individuals16. Exacerbating this issue, asymptomatic persons are also less 
likely to observe transmission-mitigating measures enacted by health agencies like the United States’ Centers for 
Disease Control and Prevention (CDC)17, thereby increasing their transmission probability. Collectively, these 
factors highlight the importance of understanding aerosol production and dispersion from everyday activities 
carried out by asymptomatic persons (“asymptomatic activities”) with regards to mitigating both the COVID-19 
and future pandemics. In this study, we focus on the specific asymptomatic activity of speaking, to elucidate the 
characteristics of speech-generated aerosols, and to determine whether speaking constitutes as much transmis-
sion risk as that observed for coughs and sneezes.

Driven by the COVID 19 pandemic, recent research in speech aerosol has gained new momentum12,18–22. 
Studies highlighted that the film burst mechanism responsible for aerosol production in coughs and sneezes is 
also prevalent in speaking, and is additionally manifested by the vibrations of vocal folds during speech12. Fur-
thermore, since speech is carried out over prolonged durations, its cumulative aerosol release may exceed those 
of coughs and sneezes23. Phenomenological, speech-based aerosol production is more complex than coughing 
and sneezing due to the varied forms of vocalizations, including different consonants, vowels, and durations of 
speech. In one series of emerging studies, researchers found that certain vowels and consonants consistently 
exhibit very high rates of aerosol production, while other vocalizations generated low amounts of aerosols21,22. The 
sizes of these aerosol droplets can range from the lower measurement limit of 0.5 µm to approximately ~ 10 µm, 
peaking at ~ 1 µm21,22. This compares against coughs and sneezes that contain both 60–100 µm ballistic droplets 
as well as small ~ 15 µm aerosol droplets that linger in the ambient air for hours5,8,9,13–15.

While the sizes and production rates of speech aerosols have been characterized, their subsequent disper-
sions have not been investigated; which makes the risk assessment of disease transmission via speech aerosols 
incomplete. In particular, it is unknown whether speech aerosols reach as far as cough and sneeze aerosols, and 
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by extension as far as CDC’s17 2 m (6 ft) physical distancing guideline. Furthermore, extrapolations of existing 
cough and sneeze models to estimate the dispersion of speech aerosols is also untenable, due to the wide range 
of human vocalizations; e.g. different syllables are associated with vastly different mouth shapes and potentially 
different aerosol ejection velocities, whose influences on the dispersion pattern are also unknown.

Our investigation addresses this gap by experimentally characterizing the dispersion of aerosols produced 
by a human subject vocalizing several key syllables and coughing at different sound intensity levels. The experi-
ments were conducted at Auburn University and was approved by the Institutional Review Board (IRB) under 
protocol #20-206 EP 2004. Time-resolved planar particle image velocimetry (PIV) was employed to capture the 
evolution of the generated aerosol-laden gas puffs. A virtual aerosol tracking approach was then overlaid on the 
PIV data to observe propagation of the otherwise invisibly small aerosol droplets. In this paper the following 
results are presented: (1) peak aerosol ejection velocity at the subject’s mouth for each test case, (2) evolution of 
the aerosol plume’s structures, (3) an assessment of whether speech aerosols follow cough’s and sneeze’s classical 
two-stage dispersion model, and (4) a comparison of penetration potentials for the tested syllables and coughs. 
With these results, the study seeks to determine whether syllables with the highest aerosol production rates 
also exhibit the furthest penetration and vice-versa, where the combination of both factors affects transmission 
risk. The study also determines whether specific zones relative to the speaker are more susceptible to exposure 
of virus-laden aerosol droplets. And finally, whether speech aerosols penetrate as far as coughs and the CDC’s 
“6 ft social distancing” guideline.

Results
Our test matrix follows from Asadi et al.’s studies of aerosol droplet sizes and production rates for different speech 
syllables21,22. They observed that vowels generate more aerosols than consonants. Among the three corners of 
the International Phonetic Alphabet (IPA) vowel chart24, /i/ (as in ‘need’) produced significantly more aerosols 
than /a/ (‘saw’) or /u/ (‘mood’). The pattern persisted when vowels were connected to a consonant; e.g. ‘heed’ 
having more droplets than ‘hood.’ On the other hand, for a fixed vowel, consonants belonging to voiced plosive 
(‘da’, ‘ba’, ‘ga’) and nasal sound (‘ma’, ‘na’) generated the most aerosols, followed by voiceless plosives (‘ta’, ‘pa’, ‘ka’), 
and then voiced fricatives (‘za’, ‘va’). Voiceless fricatives (‘ha’, ‘fa’, ‘sa’, ‘sha’) produced the least aerosol. Droplets 
size distributions broadened but maintained a near-constant peak of ~ 1 µm when sound intensity level (SIL) 
was increased. Aerosol production rates also increased with SIL, as expected.

To determine whether syllables with high aerosol production rates are also associated with high penetrations, 
this study’s test matrix (Table 1) was designed around the consonants ‘m,’ ‘t’ and ‘s’ in the order of highest to 
lowest production rates. The consonant ‘t’ was of particular interest to our study because it has a high production 
rates and also the potential for the strongest aerosol ejection with furthest penetration, due to its stop at the start 
of vocalization (i.e., the air from vocal tract is fully blocked and then released upon vocalization, resembling 
an impulsively-started jet). ‘t’ was paired with the vowels /a/ and /i/ with their respective low and high aerosol 
product rates. Two forms of /a/ pronounced “aw” and “ah” were characterized. Notably, all three vowels have 
different degrees of mouth opening at the end of vocalization, which will likely affect the characteristics of the 
ejected aerosol jet. In contrast to ‘t’, ‘m’ does not contain a stop and is expected to produce significantly softer jets. 
In fact, the vocalization of pure ‘ma’ did not produce aerosol that penetrated our measurement domain; hence, 
an alternative version where ‘ma’ was reflexively followed by soft exhale was measured instead, resembling ‘mah.’ 
Three SILs were tested for the case of ‘t,’ ranging from whispering to normal conversation to loud. For com-
parison, coughs at three different SILs were measured to represent the classical symptomatic aerosol-producing 

Table 1.   Test points. Peak sound intensity levels (SIL): Loud: SIL = 97.5 dB, σSIL = 4.8 dB, Normal: 
SIL = 85.9 dB, σSIL = 2.5 dB, Whisper: SIL = 79.9 dB, σSIL = 8.9 dB

Category Word Sound intensity level (SIL) Duration, �tvocal (s)

Nasal ‘ma’ (muh) Loud + exhale 0.22

Fricatives
‘sa’ Loud 0.23

‘si’ Loud 0.22

Plosives

‘taw’ (taw)

Whisper 0.12

Normal 0.25

Loud 0.49

‘ta’ (tuh)

Whisper 0.16

Normal 0.22

Loud 0.24

‘ti’

Whisper 0.06

Normal 0.20

Loud 0.29

Cough –

Whisper 0.26

Normal 0.20

Loud 0.40
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activity. Notably, this study isolated the physics of speech aerosols to single syllables. The physics of plume-plume 
interactions when syllables are vocalized in succession was not explored.

Aerosol ejection velocities.  Figure 1 summarizes the maximum aerosol ejection velocities at the subject’s 
mouth ( Vmouth ) for vocalizations and cough at loud SIL. Direct PIV measurement at the mouth was not achiev-
able as the laser-sheet had to be aimed away from the subject due to safety protocols. Instead, velocity at the 
subject’s mouth was determined by extrapolating Vpeak(x) from the downstream measurement domain, where 
Vpeak(x) is the local peak velocity at distance x from subject, as encountered during the entire measurement 
period. Figure 1 shows examples of obtaining Vmouth from Vpeak(x) for loud ‘ti’ and cough. The aerosol plume’s 
core was only detectible from 0.4 m forward in both cases, marked by a maximum in the raw Vpeak curve at this 
position. Beyond the maximum, Vpeak decreased quadratically until it merged asymptotically into the back-
ground noise levels at approximately 1–1.6 m. Quadratic regression in the form of:

where Ci are fit coefficients was performed on the region between the maximum and merging with background, 
and used to extrapolate peak velocity to the subject’s mouth: Vpeak(x = 0) = Vmouth . The same trends were 
observed for all vocalization and cough cases, and thus the same regression model was applied with good fit. 
Dashed lines on the top of Fig. 1 and error bars on the bottom plot denote one standard deviation of raw data 
from the regression.

The bottom of Fig. 1 shows the obtained Vmouth for tested syllables and cough. Coughing and the plosives cases 
(‘ti,’ ‘ta,’ ‘taw’) produced significantly higher aerosol-ejection velocities than the nasal and fricative cases (‘ma,’ ‘sa,’ 
‘si’). This pattern agrees with the earlier hypothesis that consonants with stops produce faster impulsively started 
jets. The projected velocity for cough in Fig. 1 agrees with existing literatures11 that reported values ranging from 
10 to 22 m/s. Especially in the case of ‘t,’ the effect of vowels on Vmouth appears marginal. All ‘t’ cases exhibited 
velocities comparable to coughing, while ‘m’ and ‘s’ were only one-third as fast.

Aerosol plume evolution.  While Vmouth is one measure of the strength of aerosol ejection, other factors 
such as mouth shape, which affects the cross-sectional profile, angle, hydraulic diameter and turbulence levels of 
ejected fluid, can all affect the aerosol plume’s structure and penetration. This section examines the evolution of 
aerosol plumes for the tested cases, starting with Fig. 2 for the classical case of loud coughing. The black particles 
in this figure represents individual virtual aerosol droplets (see Methods for detailed description), while the 
background scalar shows the out-of-plane vorticity field ( ξ =

∂v
∂x −

∂u
∂y , where u, v are velocity components along 

x, y , whose origin is centered at the subject’s mouth). Time t = td denotes the instance that the plume enters 
our measurement domain, while �tvocal denotes the total duration of the subject’s vocalization as per Table 1. 

(1)Vpeak(x) = C1x
2
+ C2x + C3

Figure 1.   Top: example of velocity extrapolations from loud vocalization of ‘ti’ and cough. Bottom: plots of 
extrapolated maximum velocity at the subject’s mouth. Error bars correspond to one standard deviation of 
regression.
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Figure 2 shows the aerosol and vorticity distributions at mid-cough ( +0.5�tvocal ), at end of cough ( +1.0�tvocal ), 
and at +1.5�tvocal to illustrate how the aerosol plume evolved initially. Thereafter, the instance 1.5 s after the 
cough ended is also shown to illustrate the plume’s long-term behavior. It will be demonstrated later that the 
aerosol plumes’ jetting-momentum dissipate very rapidly (often before the vocalization is over) and 1.5  s is 
sufficient to represent plume dispersion dynamics primarily driven by the prevailing background air currents. 
Notably, since aerosols can only be produced when vocalization is in process, virtual aerosol particles were only 
released in Fig. 2 for the duration of �tvocal from t = td onwards. This provides a more physically accurate depic-
tion of aerosol dispersion pattern compared to continuous release.

Coughs and sneezes are often modelled as impulsively started jets. For comparison the bottom of Fig. 2 illus-
trates the classical structures of such jets25. Dependent upon the stroke ratio L/D where L is the length of ejected 
fluid and D is ejection diameter, three different structures can form, all of them dominated by a large vortex ring 
leading the plume (illustrated as a twin vortex core in this cross-sectional cut). At L/D < 4 , the jet is a short puff, 
and all momentum are absorbed into the vortex ring. When L/D ≈ 4 , the maximum amount of momentum has 
been absorbed and the vortex ring begins to trail a thin tail. At L/D > 4 , the vortex ring is unstable and sheds 
off smaller vortices. The strong jet also continues to push forward in a thick column.

An order of magnitude estimation based on Vmouth , �tvocal and approximate mouth diameter D of 50 mm 
places loud cough’s L/D = Vmouth�tvocal/D at ∼ 160 . Thus, a loud cough contains far more jetting momentum 
than a single vortex ring could entrain. Figure 2 shows that the cough plume at +0.5�tvocal exhibited a dominant 
vortex ring along the plume-front at first, similar in structure to the classical impulsively start jet. But as expected 
of L/D ∼ 160 , the vortex ring quickly disintegrated into multiple smaller vortex cores starting at +1.0�tvocal . 
At +1.5�tvocal , the original vortex ring structure has become indistinguishable. However, most ejected aerosol 
particles continued to move in close unison even at +1.5s after cough, while trailing a tail of particles that is 
representative of high L/D impulseively-started jets. These observations suggest virus-laden aerosol particles 
ejected during coughs tend to remain concentrated within a moving plume-front instead of diluting uniformly. 
Regions where the plume swept through likely contain very low virus concentrations and pose relatively low 
risk of transmission. In contrast, direct collision with the traveling plume-front is expected to result in very high 
virus exposure.

Aerosol dynamics for the voiceless plosive ‘t’ are shown in Fig. 3. Similar to cough, these cases are estimated 
to have L/D on the order of 100, far exceeding the critical L/D of 4. Despite similar Vmouth ’s across the three 
plosives (Fig. 1), ‘ti’ produced a plume that penetrated significantly further than both ‘taw’ and ‘ta.’ ‘Taw’ and ‘ta’ 
both lost their penetration velocity rapidly and travelled less than 0.2 m between +0.5 and +1.5�tvocal . By 1.5 s 
after vocalization, the plumes from ‘taw’ and ‘ta’ were transported backward and upward by the background 
flow out of the domain of measurement. In contrast, the plume from ‘ti’ continued to travel forward to the 1.2 m 
mark, comparable with the cough plume that crossed 1.5 m at 1.5 s. Vortex evolutions for ‘taw’ and ‘ta’ are dif-
ficult to visualize due to their very short penetration. However, a vortex ring could briefly be observed for both 
cases as illustrated. In the case of ‘ti’, large swaths of positive vorticity were observed on the top half of the plume 
and negative vorticity along the bottom half, consistent with a classical vortex ring structure. As expected for its 
high L/D , the vortex structure was unstable and quickly disintegrated. A plume-front and thin tail were vaguely 
recognizable for ‘ti’ at +1.5�tvocal , after which the tail was observed to drift upwards while the plume-front was 

Figure 2.   Dispersion dynamics of aerosol particles for a loud cough. Background: vorticity in s−1. Inset: 
illustration of a classical vortex ring formation process from an impulsively-started jet25 for comparison.
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torn and stretched downward. Due to the asymmetric tearing of the plume-front, aerosol particles were dispersed 
across a large range of distance in ‘ti.’

Aerosol plumes produced by the nasal sound ‘ma’ and fricatives ‘sa’ and ‘si’ are shown in Fig. 4. In contrast to 
cough and plosives, their L/D values based on maximum velocity were all on the order of 20, close to the critical 
L/D for classical starting jets. Due to their low penetration, the leading vortex cores were only briefly observed 
for ‘ma’ and ‘sa’ but not ‘si.’ In the former two cases, the plumes appear to retain a coherent vortex ring for longer 
durations (up to +1.5�tvocal ) than cough and plosives, consistent with starting jets having lower L/D . Though 
no identifiable vortex cores remain at 1.5 s after vocalization, all three cases in Fig. 4 still exhibit a coherent 
swirling plume-front of aerosol particles at this stage, as opposed to cough and plosives where the plume-front 
became unrecognizably distorted.

Two‑stage transport of aerosol.  Numerous fluid mechanics models have been proposed to conceptual-
ize aerosol dispersion in coughs and sneezes, notable among which is the two-stage jet-puff model7,8,10,15, wherein 
the aerosols experience rapid initial penetrations driven by the expired air’s jetting momentum (“jetting phase”). 
As the jetting momentum dissipates, usually within 0.1 s, the aerosol droplets continue to be slowly transported 
over an extended period by the plume’s remnant momentum while undergoing additional entrainment mixing 
with ambient air (“puff phase”). In the latter, aerosol dispersion can be significantly affected by ambient air cur-
rents, the expelled gas’ thermal buoyancy and both Brownian and turbulent eddy diffusion. In the first phase, 
plume-front penetration typically scales as t1/2 , whereas in the latter a t1/4 scaling is typically observed7,10. We 
seek to assess whether the two-stage behavior also manifested within our cough and vocalization plumes.

From Figs. 2, 3 and 4, it was evident that the aerosol plumes contained significant structural distortions, 
including disintegration of the plume-front and up/downward bending of the plume trajectory, as compared 
to a theoretical jet/puff that remains symmetric and straight in trajectory. Hence, maximum penetration as a 

Figure 3.   Dispersion dynamics of aerosol particles for plosives. Background: vorticity in s−1.
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function of time could not correctly capture the dynamics of our plumes. Instead, the two-stage behavior was 
sought through the “dispersion histories” of the virtual aerosol particles, defined as each particle’s cumulative 
travel distance as a function of residence time since release. As shown in Fig. 5, on a log–log plot of the cumula-
tive travel distance versus residence time, the particles’ dispersion histories manifested the distinct two-stage 
behavior: a steep linear rise in the first phase that suggests constant-power scaling with time, followed by transi-
tion into the second phase with a shallower line that suggests a lower-power scaling. A line has been fitted to 
each phase and the intersection of these lines defined as the transition time. Similar trends were observed across 
all cases, suggesting the fundamental two-stage model holds.

The bottom of Fig. 5 shows observed transition time for cough and all cases of vocalization. Interestingly, 
transition times for cough and the plosive sounds are closer to the 0.1 s found in literature, whereas transition 
times for the nasal and fricative cases are distinctly longer. This may be due to the cough and plosive cases’ very 
high L/D compared to nasal and fricative cases’ near-critical L/D-or in other words, phenomenologically dif-
ferent regimes of impulsively-started jets.

Aerosol penetration.  Finally, an important goal of this study was to characterize the penetration potential 
of aerosols generated by different types of vocalizations in comparison to cough aerosol. In this regards, two 
separate penetration values were derived: (1) maximum penetrations at the end of the jetting phase and (2) 
maximum penetrations throughout the measured duration (approximately 2 s) which includes the puff phase 
where plume and background air interactions may significantly affect dispersion. The transition times in Fig. 5 
were used to demarcate the end of jetting phase. Figure 6 shows the maximum penetration of aerosol particles 
within the measurement domain at the end of the jetting phase and puff phase, respectively. The influence of 
sound intensity level (SIL) on penetration is also shown in Fig. 6 for cough and plosives syllables.

Figure 4.   Dispersion dynamics of aerosol particles for nasal and fricatives. Background: vorticity in s−1.
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In all cases, the aerosols gained further penetration during the puff phase as expected. However, these gains 
were especially large for the case of loud ‘ti’ and all coughs. Notably, the loud ‘ti’ achieve penetration that was 
comparable to a normal cough. In all cases, penetration remained under 2 m, suggesting that “6 feet physical-
distancing” may be sufficient for the jetting phase and puff phase within the measured duration of 2 s, but is no 
safeguard against subsequent transport if air current directions are favorable. Interestingly, despite having sig-
nificantly higher Vmouth , ‘taw’ and ‘ta’ obtained similar penetrations as ‘ma’, ‘sa’ and ‘si.’ ‘Ti’ consistently obtained 
larger penetrations relative to ‘taw’ and ‘ta’, especially during the puff phase in loud SIL. This suggests that fluid 
dynamically ‘ti’ behaves differently from other syllables, perhaps because of combining a stop consonant with 
the vowel /i/ that is vocalized with closed mouth, which resembles a converging nozzle that accelerates fluids. 
Except for the potential outlier of normal ‘ti’ having low penetration at the end of puff phase, higher SIL’s gener-
ally produced higher penetration as expected.

Figure 6 showed maximum penetrations up to the point where jet momentum in the puff phase has dissipated. 
Though not explicitly measured under the current study, aerosol will continue to linger in the air and disperse 

Figure 5.   Time-cumulative displacement tracks of aerosol particles for loud vocalizations and cough.

Figure 6.   Maximum aerosol penetrations at the end of the jetting phase (filled bars) and subsequent puff 
phase (empty bars). Uncertainty is estimated based on the velocity measurement uncertainty of the PIV cross-
correlation.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3953  | https://doi.org/10.1038/s41598-021-83298-7

www.nature.com/scientificreports/

even after the puff phase. In this post-puff period, dispersion will be dominated by several competing effects that 
include organized convection by ambient air currents either from room ventilation or thermal buoyancy, Brown-
ian diffusion of the aerosol particles, turbulent eddy-driven diffusion, as well as gravity-driven settling of the 
particles. Notably, contact with aerosol droplets in post-puff phase can take one of two forms: direct interception 
by the moving plume or indirect contact after aerosol has become fully diluted with room air. In the following 
analysis, we primarily focus on the former, which has a more fluid dynamic-related origin.

With regards to settling time, as described in the introduction, aerosol droplets from speech range from 
0.5 to 10 µm and peaks at 1 µm21,22, while cough droplets include 15 µm aerosol and 60–100 µm ballistic 
droplets5,8,9,13–15. Based on these diameters and assuming Stokes’ flow, the settling velocities for cough droplets 
are on the order of 3 mm/s, while that of speech droplets are 0.03 mm/s. These values are listed in Table 2 for 
comparison against other post-puff mechanisms. Hence, given the same penetrations, droplets from ‘ti’ or other 
syllables are expected to linger in the air longer than cough aerosol.

The settling velocity is also an indicator of how easily the aerosol droplets are stirred and convected by back-
ground currents. For the analysis of this effect, typical values for indoor air currents are estimated based on the 
work of Kohanski et al.26 and the American Society for Heating, Refrigeration, and Air-Conditioning Engineers 
(ASHRAE) standards27. Neglecting the effect of convection driven by room occupants’ movements and aerosol 
plume thermal buoyancy (the latter of which would move aerosol upwards instead of towards other persons), 
indoor air currents are primarily produced by room ventilation. The magnitudes of ventilation are typically ≥ 6 
number of air changes per hour (ACPH) for clinic rooms, ≥ 15 for operating room, ≥ 2 for outpatient rooms 
as required by ASHRAE, and at least 0.35 for residence, shops and restaurants. Forced air ventilation can be a 
double-edge sword, where more aggressive ventilation prevents the build-up of diluted aerosol but also generates 
stronger currents that can convect concentrated aerosol plumes between occupants. Using the values of 0.35–15 
ACPH, assuming ventilation occurs uniformly through the entire ceiling surface area (highly conservative veloc-
ity) and a typical single-storey height of 4.3 m, we can estimate an ambient air current velocity of 0.42 to 18 mm/s 
(see Table 2). This is higher than the settling velocities of most speech droplets and some cough droplets. Thus, 
even the lowest levels of ventilation can help suspend speech droplets indefinitely. Notably, a more realistic ven-
tilation layout where air is pumped in via isolated ducts will likely produce much stronger local currents that 
can push post-puff aerosol plumes between occupants within several seconds.

Aside from jet/puff and ventilation-driven motions that are both directional, we can also consider dispersion 
by random Brownian and turbulent eddy diffusions. The former has a diffusivity value, D , that is expressed in 
Eqs. (2) and (3):

where Cc is Cunningham’s correction, k is Boltzmann’s constant, T is temperature, µ is dynamic viscosity, l  
is the mean free path of air, and r is the aerosol droplet radius. The resulting values are on the order of 10−3 to 
10−6 mm2/s (listed in Table 2), with speech droplets having an order of magnitude higher diffusivity. Brownian 
diffusion alone, however, is typically very slow compared to eddy diffusion. The combination of both mecha-
nisms can be described using a drift-flux model commonly found in the studies of indoor air28. While exact 
values for eddy diffusivity depends on turbulence characteristic of the room (which can draw energy from 
ventilation-generated shear-flow), Gorbunov estimated that they are on the order of 105 to 106 mm2/s for venues 
such as street canyons29-substantially above Brownian diffusivity. Droplet size will play a role in how they fol-
low turbulent eddies, but given sufficiently low particle concentrations, the droplets are not expected to alter 
turbulence characteristics.

Summarily, we estimate that in the post-puff phase where the initial jet’s momentum has fully dissipated, 
aerosol particles are expected to linger in the air. Further dispersion is primarily driven by organized ambient 
air current or, in its absence, by eddy diffusion. Both mechanisms can draw energy from sources of ventilation in 
the room. Speech droplets, being an order of magnitude smaller than cough droplets, are especially susceptible 
to these dispersion mechanisms.

(2)D = Cc

(

kT

6πµr

)

(3)Cc = 1+
l

r

[

1.257+ 0.4 exp

(

−
1.1r

l

)]

Table 2.   Comparison of competing dispersion effects in the post-puff phase. *Settling velocity calculated 
assuming Stokes’ flow.

Droplet sizes (µm)
Settling velocity* 
(mm/s)

Ambient air current 
velocity (mm/s)

Brownian diffusivity 
(mm2/s)

Eddy diffusivity 
(mm2/s)

Speech

0.1 2.95× 10
−4

0.42–18

6.97× 10
−4

105–106
1.0 2.95× 10

−2 2.76× 10
−5

Cough
10 2.95 2.40× 10

−6

100 N/A N/A
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Discussion
Our study showed that coughing and consonants with a stop such as the plosive ‘t’ produced significantly faster 
starting jets ( Vmouth ) than consonants such as ‘m’ and ‘s.’ Vowels have a significantly smaller impact on Vmouth . The 
classical vortex ring formation process arising from impulsively-started jets25 was manifested in most tested cases. 
In cough and plosives, the vortex ring structures were unstable due to L/D values on the order of ~ 100. Whereas 
for nasal and fricative cases the L/D of ~ 20 allowed coherent vortex structure to persist for longer durations. 
Our results also suggest that virus-laden aerosol particles do not dilute uniformly upon expulsion. Instead, the 
vortex ring structure caused particles to roll up and concentrate towards the plume-front. The concentration of 
aerosol particles typically persists and moves in unison even after the underlying vortex has dissipated. In some 
high L/D cases, a tail of aerosol particles lingered where plume-front swept through.

A two-stage behavior was observed for all cases, though some were more pronounced than others. Strong, 
high L/D jets such as ‘ti’, ‘ta’, ‘taw’ and cough transitioned more quickly between phases relative to weaker, low 
L/D jets such as ‘ma’, ‘si’ and ‘sa.’ Consequently, aerosol penetrations by the end of the jetting phase were compa-
rable between all vocalization cases despite very different Vmouth . However, cough and ‘ti’ attained significantly 
higher penetrations in the subsequent puff phase. Thus, our results revealed that aerosol production rates and 
subsequent dispersions are independent processes: the highest aerosol-producing consonants such as ‘t’ and ‘m’ 
can produce very different penetrations. The combination of production rates and dispersions, which defines 
virus concentration and swept area, is required to accurately assess the actual risk of transmission by vocalization.

In the context of CDC’s recommended physical distancing, none of the cases’ aerosol plume reached 2 m 
by the end of the jetting phase or by the end of the measurement duration (2–2.5 s), though their observed 
susceptibility to transport by prevailing background flow suggests 2 m can be easily exceeded in favorable con-
ditions. Notably, our method of measurement focused on aerosol particles and neglected ballistic droplets that 
may exceed 2 m. Therefore, the 2 m physical-distancing guideline should be interpreted as allowing time for 
individuals to move out of an aerosol plume’s vicinity, but not guaranteed against subsequent interception by the 
plume after more than a few seconds, nor against interception by ballistic droplets. Critically, the study suggests 
interception by an aerosol plume is very detrimental, since a very large fraction of the ejected aerosols will remain 
confined within the plume-front instead of diluting. In this regard, speaking may represent a higher transmission 
risk than coughs and sneezes. The latter are singular events with a plume-front that pass by quickly, whereas the 
former is a prolonged activity continuously producing plumes of aerosols. Additionally, it is also important to 
note that the current studies are carried out without the presence of mask which is an important measure for 
mitigating the spread of aerosol-based airborne disease. More studies are required to characterize speech aerosol 
in presence of masking30,31, as well as in the presence of plume-plume interactions for sequentially vocalized 
phrases. Finally, an order of magnitude analysis for the post-puff phase suggests that although strong ventilation 
is a common strategy for reducing aerosol accumulation in a room, it can also become a driver for ambient air 
currents and eddy diffusion, which accelerates the dispersion of aerosol plume between persons. Ventilation 
strategies to curtail the spread of virus must thus consider the room’s air flow pattern in relation to occupants.

Methods
Human subject.  Our findings were generated by evaluation of a single healthy male subject of 34 years of 
age and 1.77 m in height. Although this limits the statistical scope of the measurements, it is in line with prior 
studies21 that have reported minimal variance by age, gender and BMI in aerosol generation during speech, and 
in line with recent single-subject studies32–34 driven by the need for timely response to COVID-19.

Uncertainties in this study are expected to be mitigated through repeatability of trends for plosives and coughs 
at different SIL’s, as well as the consistency in penetration and velocity differences between the plosives/coughs 
group and nasal/fricatives group. The results should be interpreted as a characterization of relative differences 
between different vocalizations and cough within a single individual, rather than guidance towards average 
penetration values throughout the population.

The study with human subject was approved by Auburn University Institutional Review Board (IRB) under 
protocol #20-206 EP 2004. All methods were carried out in accordance with relevant guidelines and regulations. 
Informed consent was obtained from the human subject for the study.

Experiment setup.  The experimental setup for this study is illustrated in Fig. 7. The standing subject was 
positioned in a 42 m2 office space, with 1 m of empty space behind, 3 m to the front and at least 1.5 m to the 
side, sufficient to exclude any aerosol-wall interactions. Penetration distance x was defined as forward from the 
subject and height y upwards, with the coordinate system’s origin aligned at the subject’s mouth. Background air 
currents in the room was measured at 0.2 m/s.

The planar measurement domain was aligned to the subject’s mouth and mid-sagittal plane. This domain 
extended 2.4 m in front of the subject to encompass the 2 m recommended under most common social-distanc-
ing guidelines. A standard PIV technique35 was used to measure the distribution of flow velocities along this 
2D domain. The PIV setup consisted of three parts: flow-seeding particles to visualize motion of the air/aerosol 
gas, a laser-sheet to illuminate those particles along the domain and cameras to image the illuminated particles.

200 µm neutrally buoyant helium-filled soap-bubbles (HFSB) generated by a LaVision HFSB Generator were 
used as the flow tracker of choice, which provided strong scattering signals at the 2.4 m scale of measurement. 
Naturally occurring aerosol droplets from the subject did not elicit sufficient light-scattering to be imaged at 
this scale. The entire room was uniformly seeded with HFSB prior to and during each vocalization/cough. These 
HFSB were illuminated using a Photonics dual-head Nd:YLF pulsed-laser (527 nm, 18 mJ/pulse at 300 Hz) which 
had its beam expanded into a fanning laser-sheet using a combination of articulated laser arm and cylindrical 
lens. For safety reasons and due to physical constraints of the laser optics, the laser-sheet was aligned pointing 
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away from the subject, with the origin of fanning underneath and approximately 0.2 m in front of the subject’s 
mouth. This prevented velocimetry measurements directly at the subject’s mouth, which had to be mitigated 
through backward extrapolation from downstream velocity measurements (Fig. 1).

Two Vision Research Phantom VEO640 high-speed cameras (4MP) recorded particle motions along the laser-
sheet. The cameras were arranged side-by-side with slight overlap to achieve a high effective image resolution of 
approximately 1.9 px/mm for all cases. In combination, the HFSB seeding density and image resolution allowed 
for vector spacing of 8 mm. The cameras and both heads of laser were synchronized to operate in straddle-mode 
( �t = 1 ms) with pairs of images taken at 300 Hz, which was empirically found to provide acceptable time-
resolved velocity data across the full test range.

To record SIL, a PreSonus microphone (sensitivity-14 mV/Pa) was positioned 1 m in front of the subject (to 
one side of the laser-sheet). SIL was calibrated to the dB-scale using a Reed R8090 two-level sound calibrator. 
Background sound levels in the room were recorded immediately after the experiment and subtracted from 
vocalization/cough data. Reported SIL value for each case was then defined as the peak dB level in the duration 
of each vocalization/expiratory event.

Velocimetry data processing and virtual aerosol tracking.  A commercially available software (LaVi-
sion Inc’s DaVis 10) was used to process the raw camera data. A board spanning the domain of measurement 
with dots of 20  mm diameter regularly spaced at 60  mm was used to calibrate the camera, which includes 
establishing the scale of measurement, de-warping the images and stitching measurements from both cameras. 
A standard set of procedures for PIV data processing was employed, including image background-subtraction, 
followed by multi-pass PIV calculations (parameters automatically optimized in DaVis given the maximum 
possible velocity of the loud cough case), and post-processed with 5-frame median-filter and local 2nd-order 
polynomial fit to smooth the velocity vectors.

Notably, the PIV approach characterized the motion of all flows within the domain of measurement without 
distinguishing between aerosol and background air. Consequently, a “virtual aerosol tracking” post-processing 
technique was performed on the PIV velocity results to elucidate aerosol dynamics. The technique consists of 
6 steps as follow:

1.	 An imaginary rake line was positioned along the top-left of the domain, encompassing the edge where the 
subject’s aerosol could enter.

2.	 1000 virtual aerosol particles were instantaneously released at random positions along the rake. Release 
began at the time-step where changes in velocities are first detected corresponding to arrival of the aerosol 
plume.

3.	 The particles’ positions were integrated forward in time by one time-step �t = 1
300Hz based on the underly-

ing PIV velocity-field.
4.	 Velocity-field from the next time-step was loaded and the particles were integrated again to their next posi-

tion.
5.	 1000 more particles were randomly released along the rake in this new time-step, representing freshly 

arrived particles from the aerosol plume. Particle release continued for the duration of the vocalization/
cough, �tvocal , as measured from the microphone data (see Table 1). This implicitly assumed a uniform rate 

Figure 7.   Illustration of the experimental setup superimposed with the velocity of the cough plume.
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of particle production during vocalization/cough-an assumption that remains to be studied in detail in future 
investigations.

6.	 Positions of the existing particles continue to be integrated forward until the end of the measured duration 
(2–2.5 s).

1000 particles per time-step was determined to be adequate through incremental increase in particle count 
until convergence was reached. Furthermore, particles that remained static along the rake after release were 
deemed badly positioned (i.e., particles outside the aerosol plume that should not physically exist) and removed 
from calculation.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to the use 
of human subject but are available in derived form from the corresponding authors upon reasonable request.

Received: 10 November 2020; Accepted: 29 January 2021

References
	 1.	 Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).
	 2.	 Rothe, C. et al. Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382, 970–971 

(2020).
	 3.	 Hui, D. S. et al. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS ONE 7, e50845 

(2012).
	 4.	 Gupta, J. K., Lin, C. H. & Chen, Q. Flow dynamics and characterization of a cough. Indoor Air 19, 517–525 (2009).
	 5.	 Tellier, R., Li, Y., Cowling, B. J. & Tang, J. W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. 

Dis. 19, 101 (2019).
	 6.	 Duguid, J. P. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. J. Hyg. (Lond) 44, 471–479 (1946).
	 7.	 Sangras, R., Kwon, O. C. & Faeth, G. M. Self-preserving properties of unsteady round nonbuoyant turbulent starting jets and puffs 

in still fluids. J. Heat Transf. 124, 460–469 (2002).
	 8.	 Bourouiba, L., Dehandschoewercker, E. & Bush, J. W. M. Violent expiratory events: On coughing and sneezing. J. Fluid Mech. 745, 

537–563 (2014).
	 9.	 Xie, X., Li, Y., Chwang, A. T. Y., Ho, P. L. & Seto, W. H. How far droplets can move in indoor environments—Revisiting the Wells 

evaporation-falling curve. Indoor Air 17, 211–225 (2007).
	10.	 Wei, J. & Li, Y. Human cough as a two-stage jet and its role in particle transport. PLoS ONE 12, e0169235 (2017).
	11.	 Bahl, P. et al. Airborne or droplet precautions for health workers treating coronavirus disease 2019?. J. Infect. Dis. https​://doi.

org/10.1093/infdi​s/jiaa1​89 (2020).
	12.	 Mittal, R., Ni, R. & Seo, J. H. The flow physics of COVID-19. J. Fluid Mech. 894, F2-1–F2-14 (2020). 
	13.	 Wells, W. F. On air-borne infection. Am. J. Epidemiol. 20, 611–618 (1934).
	14.	 Wells, W. F. Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections (Harvard University Press (for the 

Commonwealth Fund), Mass. U.S.A, Cambridge, Geoffrey Cumberlege, Oxford University Press, London, 1955).
	15.	 Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of 

COVID-19. J. Am. Med. Assoc. 323, 1837–1838 (2020).
	16.	 He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26, 672–675 (2020).
	17.	 Public Health Recommendations for Community-Related Exposure. Centers for Disease Control and Prevention (2020).
	18.	 Jennison, M. W. Atomizing of mouth and nose secretions into the air as revealed by high speed photography. Aerobiology 17, 28 

(1942).
	19.	 Chao, C. Y. H. et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. 

Aerosol Sci. 40, 122–133 (2009).
	20.	 Morawska, L. et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory 

activities. J. Aerosol Sci. 40, 256–269 (2009).
	21.	 Asadi, S. et al. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9, 1–10 (2019).
	22.	 Asadi, S. et al. Effect of voicing and articulation manner on aerosol particle emission during human speech. PLoS ONE 15, e0227699 

(2020).
	23.	 Somsen, G. A., van Rijn, C., Kooij, S., Bem, R. A. & Bonn, D. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 

transmission. Lancet Respir. Med. 8, 658–659 (2020).
	24.	 IPA chart. www.ipach​art.com. Accessed 28 August 2020.
	25.	 Gharib, M., Rambod, E. & Shariff, K. A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998).
	26.	 Kohanski, M. A., Lo, L. J. & Waring, M. S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. 

Int. Forum Allergy Rhinol. 10, 1173–1179 (2020).
	27.	 Northwest National Laboratory, P. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Accept-

able Indoor Air Quality in Low-Rise Residential Buildings. www.build​ingam​erica​.gov (1995). Accessed 28 August 2020.
	28.	 Gao, N. P. & Niu, J. L. Modeling particle dispersion and deposition in indoor environments. Atmos. Environ. 41, 3862–3876 (2007).
	29.	 Gorbunov, B. aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance. 

Aerosol Air Qual. Res. 21, 1–16 (2021).
	30.	 Dbouk, T. & Drikakis, D. On respiratory droplets and face masks. Phys. Fluids 32, 063303 (2020).
	31.	 Tang, J. W., Liebner, T. J., Craven, B. A. & Settles, G. S. A schlieren optical study of the human cough with and without wearing 

masks for aerosol infection control. J. R. Soc. Interface 6, S727 (2009).
	32.	 Anfinrud, P., Stadnytskyi, V., Bax, C. E. & Bax, A. Visualizing speech-generated oral fluid droplets with laser light scattering. N. 

Engl. J. Med. 382, 2061–2063 (2020).
	33.	 Fischer, E. P. et al. Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Sci. Adv. 6, eabd3083 

(2020).
	34.	 Stadnytskyi, V., Bax, C. E., Bax, A. & Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance 

in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. U. S. A. 117, 11875–11877 (2020).
	35.	 Raffel, M. et al. Introduction. Particle Image Velocimetry 1–32 (Springer International Publishing, Berlin, 2018). .

https://doi.org/10.1093/infdis/jiaa189
https://doi.org/10.1093/infdis/jiaa189
http://www.ipachart.com
http://www.buildingamerica.gov


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3953  | https://doi.org/10.1038/s41598-021-83298-7

www.nature.com/scientificreports/

Acknowledgements
This work was partially supported by National Institute of Biomedical Imaging and Bioengineering Trailblazer 
Award—R21EB027891. The acquisition of velocimetry instrumentation was partially supported under Army 
Research Office Grant—W911NF-19-1-0124. The views and conclusions contained in this document are those 
of the authors and does not necessarily represent the official views of the National Institutes of Health or the 
Army Research Office or the U.S. Government.

Author contributions
The corresponding authors Z.P.T. and V.R. contributed equally to the design, acquisition, and analyses of the 
data. Co-author L.S. contributed to development of the data-processing techniques and algorithms. Co-author 
S.P.B. contributed guidance on the experimental design and data analyses. All authors reviewed the manuscript.

Additional information
Correspondence and requests for materials should be addressed to Z.P.T. or V.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Experimental characterization of speech aerosol dispersion dynamics
	Results
	Aerosol ejection velocities. 
	Aerosol plume evolution. 
	Two-stage transport of aerosol. 
	Aerosol penetration. 

	Discussion
	Methods
	Human subject. 
	Experiment setup. 
	Velocimetry data processing and virtual aerosol tracking. 

	References
	Acknowledgements


